مدل برآورد سرعت وسایل نقلیه در اثر سرعت کاه ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده عمران دانشکاه صنعتی نوشیروانی بابل

2 ننن

چکیده

با توجه به استفادۀ فراوان از سرعت‌گیر و سرعت‌کاه‌ها به‌عنوان ابزارهای آرام‌سازی در راه‌های کشور خصوصاً در استان‌های شمالی (به‌علت دسترسی‌های زیاد، تداخل نقش‌های اجتماعی و جابه‌جایی راه و تفاوت زیاد سرعت وسایل نقلیه با سرعت مجاز تعیین‌شده)، در این پژوهش، بررسی اثربخشی این اقدامات در کاهش سرعت مدنظر قرار گرفته است. این مطالعه به تعیین ارتباط بین مشخصات هندسی سرعت‌کاه‌ها و سرعت وسایل نقلیه در 90 سرعت‌کاه نصب‌شده در نواحی مختلف از راه‌های واقع در شرق استان مازندران پرداخته‌ است. ازآنجایی‌که نمونۀ موردبررسی شامل انواع سرعت‌کاه‌ها اعم از قوسی و تخت بود و در راه‌هایی با رده‌های مختلف عملکردی اجرا شد، برای بررسی بهتر، سرعت‌کاه‌ها دسته‌بندی شدند و به‌طور جداگانه مشخصات هندسی هرکدام مشخص و سرعت وسایل نقلیه در پیرامونشان برداشت شد. سرعت وسایل نقلیه در چند نقطه قبل، رو و بعد از سرعت‌کاه با استفاده از دوربین سرعت‌سنج ثبت شد و ابعاد هریک از سرعت‌کاه‌ها با استفاده از دوربین توتال استیشن به‌صورت دقیق برداشت شد. درنهایت با استفاده از مدل رگرسیون خطی، داده‌ها در نرم‌افزار SPSS موردارزیابی قرار گرفته و عوامل اصلی تأثیرگذار روی کاهش سرعت وسایل نقلیه به‌همراه مدل رگرسیونی برآورد کاهش آن ارائه گردید. با توجه به اینکه تعداد سرعت‌کاه‌های موردمطالعه زیاد بوده است، نتایج این پژوهش نشان داد که برای طراحی و اجرای سرعت‌کاه‌ها در سرعت‌های عبور و سرعت‌های هدف مختلف می‌توان از این مدل‌ها استفاده نمود تا اثربخشی سرعت‌کاه‌ها در کاهش سرعت و پروفیل سرعت در فاصله‌های مختلف از سرعت‌کاه‌ها را با سطح اطمینان بالایی موردارزیابی قرار داد.

کلیدواژه‌ها


-                    Abdel-Aty, M. (2003). Analysis of driver injury severity levels at multiple locations using ordered probit models. Journal of safety research, 34(5): p. 597-603.
-                    Abdel-Aty, M. and H. Abdelwahab. (2004). Modeling rear-end collisions including the role of driver’s visibility and light truck vehicles using a nested logit structure. Accident Analysis & Prevention, 36(3): p. 447-456.
-                    Abdel-Aty, M. and J. Keller. (2005). Exploring the overall and specific crash severity levels at signalized intersections. Accident Analysis & Prevention, 37(3): p. 417-425.
-                    Abdel-Aty, M.A. and H.T. Abdelwahab. (2004). Predicting injury severity levels in traffic crashes: a modeling comparison. Journal of transportation engineering, 130(2): p. 204-210.
-                    Abdelwahab, H.T. and M.A. Abdel–Aty. (2002). Investigating driver injury severity in traffic accidents using fuzzy ARTMAP. Computer‐Aided Civil and Infrastructure Engineering, 17(6): p. 396-408.
-                    Al-Ghamdi, A.S. (2002). Using logistic regression to estimate the influence of accident factors on accident severity. Accident Analysis & Prevention, 34(6): p. 729-741.
-                    Alkheder, S., M. Taamneh, and S. Taamneh. (2017). Severity Prediction of Traffic Accident Using an Artificial Neural Network. Journal of Forecasting, 36(1): p. 100-108.
-                    Bahrololoom, S., et al. (2017). Exploring the Factors Affecting Bicycle Crash Severity in Victoria, Australia.
-                    Cantor, D.E., et al. (2010). A driver focused truck crash prediction model. Transportation Research Part E: Logistics and Transportation Review, 46(5): p. 683-692.
-                    Chang, L.-Y. and F. Mannering. (1999). Analysis of injury severity and vehicle occupancy in truck-and non-truck-involved accidents. Accident Analysis & Prevention, 31(5): p. 579-592.
-                    Chang, L.-Y. and J.-T. Chien. (2013). Analysis of driver injury severity in truck-involved accidents using a non-parametric classification tree model. Safety Science, 51(1): p. 17-22.
-                    Chen, F. and S. Chen. (2011). Injury severities of truck drivers in single-and multi-vehicle accidents on rural highways. Accident Analysis & Prevention, 43(5): p. 1677-1688.
-                    Das, A. and M. Abdel-Aty. (2010). A genetic programming approach to explore the crash severity on multi-lane roads. Accident Analysis & Prevention, 42(2): p. 548-557.
-                    Das, A., et al. (2008). Characteristics of urban arterial crashes relative to proximity to intersections and injury severity. Transportation Research Record: Journal of the Transportation Research Board, (2083): p. 137-144.
-                    Das, A., M. Abdel-Aty, and A. Pande. (2009). Using conditional inference forests to identify the factors affecting crash severity on arterial corridors. Journal of safety research, 40(4): p. 317-327.
-                    Delen, D., R. Sharda, and M. Bessonov. (2006). Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks. Accident Analysis & Prevention,. 38(3): p. 434-444.
-                    Desapriya, E., I. Pike, and P. Raina. (2006). Severity of alcohol-related motor vehicle crashes in British Columbia: case–control study. International journal of injury control and safety promotion, 13(2): p. 89-94.
-                    Deublein, M., et al. (2013). Prediction of road accidents: A Bayesian hierarchical approach. Accident Analysis & Prevention, 51: p. 274-291.
-                    Edwards, J.B. (1999). The relationship between road accident severity and recorded weather. Journal of Safety Research, 29(4): p. 249-262.
-                    Haleem, K. and M. Abdel-Aty. (2010). Examining traffic crash injury severity at unsignalized intersections. Journal of safety research, 41(4): p. 347-357.
-                    Huang, H., H.C. Chin, and M.M. Haque. (2008). Severity of driver injury and vehicle damage in traffic crashes at intersections: a Bayesian hierarchical analysis. Accident Analysis & Prevention, 40(1): p. 45-54.
-                    Islam, M.B. and S. Hernandez. (2011). An Empirical Analysis of Fatality Rates for Large Truck Involved Crashes on Interstate Highways. In 3rd International Conference on Road Safety and Simulation.
-                    Jadaan, K.S., M. Al-Fayyad, and H.F. Gammoh. (2014). Prediction of road traffic accidents in jordan using artificial neural network (ANN). Journal of Traffic and Logistics Engineering,. 2(2).
-                    Khattak, A.J., R.J. Schneider, and F. Targa. (2003). Risk factors in large truck rollovers and injury severity: analysis of single-vehicle collisions. Transportation Research Record, 40.
-                    Khorashadi, A., et al. (2005). Differences in rural and urban driver-injury severities in accidents involving large-trucks: an exploratory analysis. Accident Analysis & Prevention, 37(5): p. 910-921.
-                    Kockelman, K.M. and Y.-J. Kweon. (2002). Driver injury severity: an application of ordered probit models. Accident Analysis & Prevention,. 34(3): p. 313-321.
-                    Kuhnert, P.M., K.-A. Do, and R. McClure. (2000). Combining non-parametric models with logistic regression: an application to motor vehicle injury data. Computational Statistics & Data Analysis, 34(3): p. 371-386.
-                    Lemp, J.D., K.M. Kockelman, and A. Unnikrishnan. (2011). Analysis of large truck crash severity using heteroskedastic ordered probit models. Accident Analysis & Prevention, 43(1): p. 370-380.
-                    Lyman, S. and E.R. Braver. (2003). Occupant deaths in large truck crashes in the United States: 25 years of experience. Accident Analysis & Prevention, 35(5): p. 731-739.
-                    Moeinaddini, M., et al. (2015). Analyzing the relationships between the number of deaths in road accidents and the work travel mode choice at the city level. Safety science, 72: p. 249-254.
-                    Nassiri, H. and A. Edrissi. (2006). Modeling truck accident severity on two-lane rural highways. Scientia Iranica, 13(2): p. 193-200.
-                    Nevarez, P., et al. (2009). Large-scale injury severity analysis for arterial roads: modeling scheme and contributing factors. In Transportation Research Board 88th Annual Meeting.
-                    Park, S.-h., S.-m. Kim, and Y.-g. Ha. (2016). Highway traffic accident prediction using VDS big data analysis. The Journal of Supercomputing,. 72(7): p. 2815-2831.
-                    Shankar, V., F. Mannering, and W. Barfield. (1996). Statistical analysis of accident severity on rural freeways. Accident Analysis & Prevention, 28(3): p. 391-401.
-                    Sze, N.-N. and S. Wong. (2007). Diagnostic analysis of the logistic model for pedestrian injury severity in traffic crashes. Accident Analysis & Prevention, 39(6): p. 1267-1278.
-                    Theofilatos, A. and G. Yannis. (2014). A review of the effect of traffic and weather characteristics on road safety. Accident Analysis & Prevention, 72: p. 244-256.
-                    Theofilatos, A., D. Graham, and G. Yannis. (2012). Factors affecting accident severity inside and outside urban areas in Greece. Traffic injury prevention, 13(5): p. 458-467.
-                    W.H.O., Global Status Report on Road Safety. (2013). Supporting a decade of action. World Health Organization (WHO).
-                    Wang, K., et al. (2016). How the choice of safety performance function affects the identification of important crash prediction variables. Accident Analysis & Prevention, 88: p. 1-8.
-                    Zhu, X. and S. Srinivasan. (2011). Modeling occupant-level injury severity: An application to large-truck crashes. Accident Analysis & Prevention, 43(4): p. 1427-1437.
-                    Zou, W., X. Wang, and D. Zhang. (2017). Truck crash severity in New York city: an investigation of the spatial and the time of day effects. Accident Analysis & Prevention, 99: p. 249-261.